The Alkaloids 8,14-Dihydrosalutaridine and 8,14-Dihydronorsalutaridine from *Croton linearis* Jacq.

By L. J. HAYNES, G. E. M. HUSBANDS, and K. L. STUART (Chemistry Department, University of the West Indies, Kingston 7, Jamaica)

RECENTLY we reported the isolation of norsinoacutine and salutaridine (I) from *Croton balsamifera* Jacq.,¹ and now communicate the characterisation of two new related alkaloids from *C. linearis*. They are 8,14-dihydrosalutaridine,* $C_{19}H_{23}NO_4$ (II; R = Me, R' = H) and 8,14-dihydronorsalutaridine, $C_{18}H_{21}NO_4$ (II; R = R' = H).

8,14-Dihydrosalutaridine was first isolated as its O-acetyl derivative (designated base BIA), m.p. 210°, $[\alpha]_{15}^{15} - 22 \cdot 1^{\circ}$ (MeOH) from C. linearis,² but the free base, m.p. 198-203°, $[\alpha]_{15}^{15} - 76 \cdot 1^{\circ}$ (MeOH), λ_{max} 206 m μ (ϵ , 32,730), 238 m μ (ϵ , 6960), 265 m μ (ϵ 7550) has subsequently been isolated from C. discolor Willd.³

Hydrogenation of the dihydrosalutaridine compound (II; R = Me, R' = H), v_{max} 1681, 1613 $(\alpha\beta$ -unsaturated CO), gave two products. One product, m.p. 214-217° (ethanol of crystallisation), $[\alpha]_D^{15} - 20^\circ$ (MeOH) was shown to be tetrahydrosalutaridinol (III). Mass-spectral data of the latter⁴ showed the parent peak at m/e 333 $[^{\%}\Sigma_{40} = 14.1]$, and the expected fragmentation⁵ with the base peak (IV) at $m/e \, 196 \, [\% \Sigma_{40} = 14.8]$. Along with the other fragments was a peak at $m/e 59 [\% \Sigma_{40} = 3.4]$. This fragmentation pattern taken in conjunction with the relative abundance of these peaks strongly suggests trans-fused B:C rings.⁵ As the stereochemistry of the C-14 centre is the same as that of the naturally occurring base, BIA, a study is being made of the complete stereochemistry of tetrahydrosalutaridinol (III). The other hydrogenation product, m.p. 218-220° was dihydrosalutaridinol, $C_{19}H_{25}NO_4$ (V).

The structure of the new base, 8,14-dihydrosalutaridine, (II; R = Me, R' = H), molecular ion at m/e 329,⁶ was fully supported by n.m.r. (CDCl₃) evidence. The aryl protons appeared at δ 6.68, the two methoxyl groups at δ 3.85 and 3.68, the *N*-methyl at δ 2.38 and the C-5 proton at δ 6.76. The spectrum of the O-acetyl derivative (II; R = Me, R' = Ac) showed two aromatic protons (δ 6.96, 6.88; J = 9 c./sec.), two methoxyl groups (δ 3.70, 3.80), one *N*-methyl group (δ 2.32), a phenolic acetate (δ 2.45) and the C-5 proton shifted to δ 6.3.

8,14-Dihydronorsalutaridine (II; R = R' = H),

molecular ion at m/e 315,⁶ m.p. 208—212° (ethyl acetate of crystallisation), $[\alpha]_D^{15} - 69\cdot1°$ (MeOH), ν_{max} 3170 (NH), 1670 and 1600 ($\alpha\beta$ -unsaturated CO) cm.⁻¹ (Nujol) was isolated by re-examination of residual material from fractions E and F of earlier countercurrent experiments.² The gross

structure was established by correlating the fully methylated quaternary compound, $[\alpha]_D^{16} - 34^{\circ}$ (MeOH) derived from this base with that from 8,14dihydrosalutaridine. These compounds from both sources were identical and gave an identical Hofmann product (VI), m.p. 50—55°. The hydroxyl group in 8,14-dihydronorsalutaridine could be correctly located at C-4 by examination of the n.m.r. (CDCl₃) of the base and its neutral NOdiacetyl derivative, m.p. 252—255°, (II; R = R' = Ac), 8,14-dihydronorsalutaridine showed two aryl protons (δ 6·7), two methoxyl groups (δ 3·67 and 3·85), one hydroxyl group (δ 3·56, exchangeable

* Professor D. H. R. Barton has suggested on the basis of his unpublished work that this alkaloid should be the enantiomer of isosinomenine; we have established that this is so by direct comparison of our material with a sample of isosinomenine which he kindly provided.

phenolic acetate ($\delta 2.35$) one N-acetate ($\delta 2.12$) and the C-5 olefinic proton was shifted to δ 6.26, again due to the influence of the O-acetyl group at C-4.

(Received, October 24th, 1966; Com. 810.)

¹ C. Chambers, L. J. Haynes, and K. L. Stuart, *Chem. Comm.*, 1966, 449.
² L. J. Haynes and K. L. Stuart, *J. Chem. Soc.*, 1963, 1784.
³ Unpublished results, K. L. Stuart and C. Chambers.
⁴ Spectrum kindly determined by Dr. H. W. Fehlhaber and Dr. D. R. Taylor.
⁵ A Mondelbourg and D. Cingburg. Totradadana Litture, 1965, 2470.

⁵ A. Mandelbaum and D. Ginsburg, Tetrahedron Letters, 1965, 2479.

⁶ Mass-spectral data were obtained on the A.E.I. MS9 instrument through the courtesy of Professor Allan Maccoll and Dr. A. Loudon.